Distance matrix of weighted cactoid-type digraphs

نویسندگان

چکیده

A strongly connected digraph is called a cactoid-type if each of its blocks consisting finitely many oriented cycles sharing common directed path. In this article, we find...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic matrices of weighted digraphs

We address in this paper several properties of so-called augmented cyclic matrices of weighted digraphs. These matrices arise in different applications of digraph theory to electrical circuit analysis, and can be seen as an enlargement of basic cyclic matrices of the form BWB , where B is a cycle matrix and W is a diagonal matrix of weights. By using certain matrix factorizations and some prope...

متن کامل

Distance-two labelings of digraphs

For positive integers j ≥ k, an L(j, k)-labeling of a digraph D is a function f from V (D) into the set of nonnegative integers such that |f(x) − f(y)| ≥ j if x is adjacent to y in D and |f(x) − f(y)| ≥ k if x is of distant two to y in D. Elements of the image of f are called labels. The L(j, k)-labeling problem is to determine the ~λj,knumber ~λj,k(D) of a digraph D, which is the minimum of th...

متن کامل

Inverse Maximum Dynamic Flow Problem under the Sum-Type Weighted Hamming Distance

Inverse maximum flow (IMDF), is among the most important problems in the field ofdynamic network flow, which has been considered the Euclidean norms measure in previousresearches. However, recent studies have mainly focused on the inverse problems under theHamming distance measure due to their practical and important applications. In this paper,we studies a general approach for handling the inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2021

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2021.1916423